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Conformal spectrum of the six-vertex model? 

A Kliimper$, T Wehners and J Zittartzq 
lnstitut fur Thwretische Physik. UniversitZt zu K61n. Zilpicher Str 77,50937 KSln 41, Federal 
Republic of Germany 

Received 18 February 1993. in fink form 15 April 1993 

Abshact By way of a generalization of analytical methods recently introduced, the conformal 
spectrum of the six-vertex model with twisted boundary conditions is analysed. Nonlinear 
integral equations are derived. from which all scaling dimensions x and the spins s can be 
e x m t e d  analytically in terms of Rogers dilogarithms. For twist angle 4, the scaling dimensions 
of low-lying excitations are given by the so-called Gaussian dimensions 

L LI I - Y I X  

where y is the crossing p-eter. S the magnetization and m another integer characteridng the 
excited state. These results are amlied to the calculation of critical exponents of the eight-vena 
model. Further applications are pointed out 

1. Introduction 

A major area of interest in statistical physics is the study of critical properties of models 
at phase transitions and, more specifically, the determination of the scaling dimensions x ,  
from which the critical exponents can be deduced. Especially in two dimensions a wealth 
of important information can be gained from the assumption of conformal invariance of 
models at criticality [l, 21. In this paper we study the critical two-dimensional six-vertex 
model and the associated spin-$ X X Z  quantum chain. 

The aim of many studies of critical systems is the identification of the underlying 
conformally invariant field theory by calculating the central charge c and the scaling 
dimensions x .  For lattice models one may pursue two different methods. First, the energy 
levels of the corresponding quantum model on a finite chain will scale with the system size 
N like [3, 41 

2H 
E x - ~ E o = - v x + a  N 

where EO is the ground state energy, EA are the energies of the low-lying excited states 
and v is the sound velocity of the elementary energy-momentum excitations. Equivalent 
formulae can be set up for the spectrum of the tmnsfer matrix of the two-dimensional model 
[51. Secona, the quantum model can be studied on an infinite chain at finite temperature 
161. The low-temperature behaviour of the free energy density and the correlation lengths 

t Work performed within the research program of the Sonderforschungsbereich 341 Kliln-Aachen-JUlich. 
1 E-mail: kluemper@thp.uni-koeln.de. 
8 E-mail: tw@thp.uni-kceln.de. . 
ll E-mail: zitt@thp.uni-kceln.de. 
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also allows for a calculation of c and all x [€-8]. This method, however, is more involved 
and will not be used in the present paper. 

Of course, a lot is known about the critical six-vertex model either by analytical [9-11 J 
or numerical methods [lZ, 131 based on (1.1). The dimensions x are given by the Gaussian 
spectrum. The analytic method for calculating finite-size corrections as developed in [9, IO] 
was applied to many models, cf [ 141 and references therein. However, it has a shortcoming 
as it fails for the higher spin4 X X Z  chains 115, 161 and similar problems. In [17] an 
alternative procedure was developed which proved to be applicable to the S = 1 case thus 
opening a wide field of investigations [18-211. In [I71 the ground state energies of the 
quantum chains were treated. Here we want to show how excitations are dealt with and at 
the same time we shall give a comprehensive analytic study of the six-vertex model. 

Another reason to revisit the six-vertex model is its importance for the investigation of 
the thermodynamics of the spin-; X X Z  chain. The standard approach to thermodynamics of 
integrable quantum chains [22, 231 is restricted to the calculation of the free energy, while 
correlation functions are out of reach. The situation is different in the quantum transfer 
matrix approach [24-261. There the correlation lengths are accessible from the low-lying 
part of the spectrum of the quantum transfer matrix. Its evaluation is the main problem 
within this alternative approach. The necessary calculations are similar to those in section 3 
below and lead to non-linear integral equations [27] which also are very similar to the 
equations for the finite-size corrections. For an analogous treatment of the thermodynamics 
of quantum chains related to RSOS models we refer to [SI. 

In section 2 we define the six-vertex model on a square lattice with a 'seam'. This 
is done to enable contact to be made with other models based on the Temperley-Lieb 
algebra [28, 291. In section 3 we derive nonlinear integral equations from the Bethe ansatz 
equations. The integral equations turn out to allow for simple numerical solutions and 
for analytic studies of the large system asymptotics. The 1/N corrections are calculated 
analytically in section 4, from which the scaling dimensions are identified. The conclusion 
in section 5 contains a short overview on possible applications of the results derived in this 
paper. 

2. The six-vertex model: definition and eigenvalue equation 

We consider the six-vertex model on a square lattice. The arrow or spin variables on each 
bond of the lattice take the values ff. The statistical weights of the allowed vertices are 
given by the R-matrix R! ;(U) corresponding to a vertex with spins a, b, y ,  6 on the lower, 
upper, left and right bonds, respectively. The non-zero weights are 

Rli2 112 , l z ( ~ )  112 

R l i 2  -1/2 , p ( ~ )  = sinh A 

RE ;(U) = R ,  -B -6 -Ju) = R; !(U) = Rg C Y  8 (4 

= sinh(A/2 - U) 

- 
and those related to these by the symmetries 

and the crossing symmetry 

Re Y '(U) = R: :$(-U) (2.3) 

where U denotes the spectral parameter. The 6-vertex model is critical for imaginary values 
of the crossing parameter k A = -iy with y E [O, n[. In most of the following we shall 
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restrict ourselves to the ‘repulsive range’, y E [0, n/2[. This is done for the sake of a 
simple presentation of our analysis. The final results, however, have full validity. As in 
[12], we consider twisted boundary conditions by introducing a seam on the lattice, i.e. by 
changing the vertex weights in column N to ea’”! ;(U). q5 is called the twist angle. 

As is well known, each eigenvalue A(u) of the transfer matrix of the six-vertex model 
satisfies the functional equation [30] 

A ( u ) ~ ( u )  = w-’@(u - i y p )  q ( u  + iy) + o@(u + iy/z) q(u - iy) (2.4) 

with functions @(U) and q(u)  defined by 
n 

@(U) = (sinhu)N q ( u )  = ~ ( I J  - u j )  
j=l 

and twist factor 

e’+, 

(2.5) 

The Bethe ansatz numbers (or moments) uj ,  j = 1, . . . , n ,  0 5 n 5 N/2, have to satisfy 
the Bethe ansatz equations 

p ( u j ) = - l  j = l ,  .... n (2.7) 

where the function p ( u )  is defined by 

1 @(u~-iy/2)q(u+iy)  
w2@(u+iy /2 )q (u - i~ ) ‘  P ( V )  = - 

One of the essential ingredients of OUT method is the identification of certain analyticity 
domains of the functions @(U), q ( u ) ,  A(u),  i.e. strips in the complex plane where these 
functions are analytic and non-zero (ANZ). The analytic properties of the eigenvalue functions 
were extensively studied in [31, 321, the results of which are used here. For details we refer 
directly to the original papers. For the ground state with n = N,/2, real Bethe ansatz 
numbers analyticity domains are given by 

@(U) ANZin 0 c Im(u) < - K ~  

&(U) ANZin - y / 2  5 Im(u) 5 y / 2  
q ( u )  ANZin --K < Im(u) c 0 (2.9) 

where~Ao denotes the largest eigenvalue. 
For the low-lying excitations there are ( N / 2 )  - m real Bethe ansatz numbers with 

m E N+. The remaining m moments either have a non-vanishing imaginary part, forming 
strings in the complex plane, or they are missing altogether. 

In [31] it was shown that in the thermodynamic limit only two types of strings can 
occur: 

Each type of string gives rise to two real zeros 01 ,  0 2  of the corresponding eigenvalue 
function A(u), henceforth called rapidities. This is also true for the ‘missing’ moments, 
which can be thought of as 1-strings with an infinite real part. As will be seen in the 
following sections, the occurrence of these rapidities leads to essential modifications of the 
calculations,performed for the ground state in otder to make &em applicable also to the 

’2-strhgs, i.e. pairs of moments u,,ur with [Im(uu)[,  I h ~ ( u / ) l  < y and 
Im(u,) - Im(u,) k y ,  and 
I-strings, i.e. single moments uj with y < Im(uj) < n - y. 
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excitations. To summarize we note that excited states are characterized by patterns of strings 
and rapidities in the complex plane. In the following we shall denote the number of strings 
with positive (negative) real part by k+ and the number of positive (negative) rapidities by 
U&. 

Finally we remark that the number~of factors of the 9 function (2.5). i.e. the number 
of all real and complex moments in a given state, is obviously equal to N/2 - S, where 
S is the magnetization of the state. Furthermore every complex moment corresponds to a 
simple zero of 9(u)  in the strip (2.9). 

3. Nonlinear integral equations 

The first main step of our analysis is to derive an integral equation for some auxiliary 
functions defined by 

n(x) := I / p ( x  -iy/2) m(x) := 1 + a@) 
- - (3.1) 
a(x) := p ( x  + iy/2) %(x)  := 1 + ?i(x). 

Although the functions n and ii are related to one another by complex conjugation, it will 
prove to be convenient to treat them as independent of each other. First we observe from 
(2.5) and (2.8) that the functions (3.1) have simple asymptotics: 

n(&w) = e2ilm+S~l 
- - (3.2) 

%(&CO) = 1 + a(2cco) 

%(&CO) = 1 + ?i(&CO). 

*(f} of a complex function f ( u )  along the integration path C by 

= e - 2 i w w  

To derive integral equations for our auxiliary functions, we define the Fourier transform 

(3.3) 

where the real part of the integration variable varies from -CO to CO. If the path C is 
simply a straight line along the real axis, we just write &{f] instead of FF{f). Due to 
Cauchy's theorem one always has e[f} = $(f], as long as the paths C and c" do not 
enclose singularities of f ( u ) ,  which will turn out to be extremely important for our further 
manipulations. 

It is necessary to give a short qualitative account of the analyticity properties of the 
functions in the presence of rapidities and strings. To this end we observe that due to (2.4) 
and (2.8) the definition (3.1) can be written in the form 

(3.4) 

From (3.4) it follows immediately that %(0 + iy/2) = 0 for each rapidity 0, and 
similarly we have a(@ - iy/2) = 0. Furthermore we conclude that for every complex 
moment uj we have n(uj - iy/2) = %(uj - iy/2) = %(U, + iy/2) = w as well as 
%(uj + iy/2) = %(uj - iy/2) = 0. We remark that for finite systems the expression 
Im(u.) - Im(ul) = y for 2-strings is valid only up to certain corrections, so the zeros and 
poles of %(U) and %(U) occurring halfway between the two moments forming the string are 
separated by a small distance. 

This pattem of zeros and poles of the auxiliary functions forces us to perform certain 
Fourier transforms along deformed integration paths, in order to meet the requirements for 
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the above-mentioned application of Cauchy's theorem. Therefore we introduce the path C 
which basically follows the real axis from --CO to CO, but is deformed in such a way as 
to encircle the points 0 + iy/2 and uj - iy/2 clockwise. Here 0 denotes any of the real 
rapidities and uj any of the 1-strings or upper moments of the 2-strings in the complex 
plane. Thus the path C encircles a zero of %(x), whenever it passes a rapidity, and a zero of 
%(x)  and a pde of a(x) and %(x) ,  whenever it passes astnng. h fact, whenever a 2-string 
occurs, one has to take care that the point U, + iy/2 lies above the deformed path where U, 
denotes again the lower of the two moments. 

After these preliminary considerations, we can now tackle the actual derivation of the 
integral equation. First we write a(x) and ii(x) as 

- 

by using the Ti-antiperiodicity to reduce the arguments of the functions @(U) and 4(v) to 
the strips (2.9). Then we apply the Fourier transform to the second logarithmic derivative 
of the first equation 

(3.6) 
where the superscript '-' denoks an integration path along the real axis with a small 
negative imaginary part. The reader should convince himself that the paths L - i3 y/2 ind 
L + i(y/Z - n) do not enclose any singularities of q(x) ,  so that in (3.6) we are allowed to 
redeform them to straight lines and move them close to the real axis from below. 

Now we want to exploit the fact that the only zeros of the eigenvalue function A(u) in 
strip (2.9) are given by the rapidities 0. We define the function h(u) by 

&[Inn]" = (1 - e(y-n)k) &[In @I"+ (e:Yk - e(r-f)k)FJlnql" 

(3.7) 

which has zeros at U = 0 and poles at U = uj + iy. We want to calculate the Fourier 
transform of [lnh]" in two different ways by using two different representations 

By the same reasoning as above one can derive the following expressions for e [Inh]" 

eYl"~[ lnhl"  = - e y / " c [ l n  43" + Ff[ln %I" - Ff[ln a]" 

e-Y'"e[In h]" = F'[III?~]'' - e'n-Y/2)kq[In 41" 
(3.9) 

where the superscripts '+' and '-' again denote integration paths, along the real axis with 
small positive and negative imaginary parts, respectively. It is simple to solve these 
equations and (3.6) for Ff[lna]" and FJlnq]N in terms of Ff[ln%]" and F:[In@', 
obtaining 

Nk sinh (in - y )  k 
2cosh;yksinh $(a - y)k 

'FfLIn a]" = + e-yk + [Ff[lnll]" - e(Y-6)Ff[ln%]"] (3.10) 
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To proceed we take the inverse Fourier transform of (3.10) to obtaint 

[Inn]"(x) = N [Intanh (:)I" 
~ 

+ [F(x-y)[InTU]"(y)-F(x-y+k-iy)[ln?i]"(y))dy (3.12) L 
where F ( x )  is defined by 

e'"&. 
1 Jm sinh(5 - y ) k  

F(x) := - 
2ir -m 2 cosh $k sinh y k  

(3.13) 

Now we write down the final integral equation by integrating (3.12) twice obtaining 

In n(x) = N In tanh - [ ;;I 
+ L [ F ( x  - y) InTU(y) - F(x - y + is - iy) In%y)]dy + C (3.14) 

where the integration constant C .can be determined from the asymptotic behaviour (3.2), 
see below. Equation (3.14) is exact for all finite system sizes N. 

4. Analytic calculation of 1/N corrections 

To determine the finite-size corrections to the largest eigenvalue in terms of the functions 
%(x) and z(x) ,  (2.4) is written in the form 

Fourier transforming, inserting (3.1 I), and then manipulating the resulting equation in much 
the same way as before, one eventually finds 

s i n h ( y ) k s i n x k  J -m 2k sinh f k  cosh $k dk InA(x - iy/2) = In@(x - iy) - Ni 

with abbreviations 

(4.3) 

The bulk contribution is entirely contained in the first line of (4.2) and the finite-size 
corrections are given in terms of the function %(x) alone. The lattice momentum PO of the 
state can be read off as 

, . -  ;* := v* - 2k+ A; := U+ - v-. 

(4.4) 

t Actually. whenever strings occur in the romplex plane, equation (3.12) cannot be established by simply 
Vansforming back (3.10) because the k-integral need not necessarily be convergent any longer. In that case 
one can obtain (3.12) by first expressing the Fourier transforms along I: by 'usual' Fourier @ansforms (using 
the residue theorem). lhen transforming back the resulting equation and finally eliminating the additive terms by 
deforming the integration paths again. 
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Again equation (4.2) is exact for all finite system sizes N .  
To make further progress we now perform a suitable scaling limit by substituting the 

arguments x-of  the. functions a and a by i ( x  + InN) and letting N + w; the scaled 
functions are denoted by a+ and A* respectively. In that way we obtain the scaled equation 

(4.5) 

2821 

ha&) = -2e-I + FI *e In A* - FZ *c lnx+ + C* 

where Fl and F2 are defined by 

and f g denotes the convolution of two functions f and g along L 

(f *c  s)(x) :=. f ( x  - Y)g(Y)dY. (4.7) s, 
The values of C+ are determined from the asymptotics of the auxiliary functions 

Ina+(w) = 2i(@ rt S y )  

Inz+(wj = -2i(4 ~ y )  

In A*(w) = In (1 + ezi'~*sy)) f (k+ - u*)2ni 

InX+(w) = In ( I  + e-2i'~+sy)) 7 k+2ni 

(4.8) 

yielding 
rri 

n-y 
c* = - [4 i (s - 26+) y f C*n]. (4.9) 

The same scaling limit can be performed for the second integral on the RHS of (4.2). 
leading tot 

dy = L / In A(y) + InA(y) 
2y c sinh $ ( x  - y + ic) H N  (In A+(y) + Inx+(y)) e-Ydy 

(4.10) 

from which the scaling dimensions and spins [5] can be read off as 

(4.11) 

where we have used that the central charge of the six-vertex model (without twist) is c = 1 
and the amplitude of the finite-size correction for the groundstate energy is given by [17] 

(4.12) 

t Here the reason for the particular choice of [he phase factors in (4.8) becomes evidenL To guarantee the 
convergence of the integrals on the RHS of (4.10) one has to take care that the expressions InA*(y) +in;iiiy) 
exponentially tend lo zero for y + -m. which is achieved by (4.8). 
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Fortunately, the integrals in (4.1 1) can be determined without explicitly solving the integral 
equation (4.5) for a*. After some algebraic manipulations of (4.5) and of the corresponding 
equation for E*, and using certain symmetries of the functions F,, Fz [17] one finds 

4 

(4.13) 
1 e-.' (In A&) + In&(x)) dx 

= 2L+ ( Q ~ C ) )  + 2L+ G&)) - Ci (Inxdw) - In M o o ) )  

where the dilogarithmic function L+(C) is defined by 

(4.14) 

and C is a path starting at 0. Fora straight integration path C one can write L+(z), where 
z is the endpoint of C. Note that the value of L+(C) in general depends on the homotopy 
class of C and not only on its endpoint. L+ is related to the standard Rogers dilogarithm L 
by L+(z)  = L (z / l  + 2). Using (4.8). (4.9). (4.13). and the identities 

2L4 (u*(L)) + 2L+ @+(L)) = - + 4ir& (&$ + Sy - fi*) - 8 2 k +  (U& - k*) 
Jr2 

3 
(4.15) 

(following from formula (A.ll) of the appendix) and finally inserting everything into (4.11) 
we find 

+ k + k  I 

with m = AC12 E Z and integers k ,  defined by 

k := k+(u+ - k+) E N 
k := k-(u- - k- )  E N. 
- (4.17) 

Up to now we have tacitly assumed that all rapidities and strings are positioned outside 
the distribution of real Bethe ansatz numbers. If this is not the case, formula (4.15) becomes 
much more complicated. As mentioned above, the values of L (a* (L)) and L Gi (L)) 
depend on the homotopy classes of U* (L) and Z* (L), respectively. More precisely, they 
depend on the way these paths encircle the singularities of the integrand in (4.14) at 0 and 
-1, thus singling out different branches of the dilogarithms. In fact the path U+ (L) (U- (L)) 
encircles the origin clockwise (counter-clockwise) whenever L passes a real Bethe-ansatz 
number, and it encircles the point -1 clockwise (counter-clockwise) whenever C encircles 
a zero of A&) and counter-clockwise (clockwise) whenever a pole of A&) is encircled. 
Analogous statements are true for Z* (L). 

Using these general properties we have carried through the foregoing calculation also 
for the more general case when the rapidities and strings are allowed to be interspersed with 
real Bethe ansatz numbers; it tums out that one does not find any new scaling dimensions 
but the values of the numbers k,  in (4.16) are modified. One can show that they are still 
non-negative, the corresponding states belonging to the same conformal tower as before. 
We confine ourselves to give the formulae for k ,  for the special case when only rapidities 
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but no complex moments are present. In that particular case one obtains (using (A.13)) 

(4.18) 

where the non-negaGve integers k: denote the distances of the ith positive or negative 
rapidity from the right or left edge of the distribution of real Bethe ansatz numbers, 
respectively. 

Some of the scaling dimensions and spins given by (4.16) corresponding to low- 
lying excitations have been calculated numerically in [12] and analytically in [33, 341. 
Furthermore, equation (4.16) confirms the conjecture conceming the full  operator content 
of the X X Z  chain with twisted boundary conditions obtained numerically~in [13]. For the 
particular case of 4 = 0, the result (4.16) has already been analytically obtained in [lo] 
and [ 1 I] .  In [I I ]  one can also find analytical results for the-scaling dimensions of the Potts 
model corresponding to the general equation (4.16). 

5. Conclusion 

We have presented an analysis of the I j N  corrections to the eigenvalues of the six-vertex 
model transfer matrix. From these data the central charge and the scaling dimensions of the 
model could be derived. 

In particular we have rewritten the Bethe ansatz equations in terms of non-linear integral 
equations which are exact for any finite system size- N and which admit simple numerical 
calculations and analytic studies of the large N asymptotics. The calculations have been 
given for anisotropy y c r / 2  which allowed for a simple presentation. The results, 
however, are valid throughout the entire critical regime 0 < y c r. 

A first application of these results is the calculation of the critical.exponents of some 
observables in the eight-vertex model. In general, the exponents U ’  and q are related to 
 the^ leading thermal and electric exponents x, and xe by U = 1/(2 - x ~ ) ,  and qe = be, 
respectively. With xe = x(S = 2, m = 0, @ = 0) and x, = x(S =- l ,m = 0, @ = 0) in 
(4.16) we obtain 

from which a, fie, ye and 8, can be derived by employing scaling relations. These coincide 
with Baxter’s results [30]. The continuous variation (with y )  can be understood from the 
existence of a marginal operator with x =~ 2 corresponding to the four-spin interaction. 
 the subscript ‘e’ (‘electric’) refers to critical exponents of the model found in the vertex 
formulation. 

The ‘equivalent’ IRF (‘interaction-round-a-face’) version 1301 contains more. observables, 
one of them being the magnetization. In order to calculate the additional critical exponents 
we are led to study the finite-size spectrum of the RF transfer matrix. Equivalently, we 
consider the partition function ZI of the eight-vertex model in king variables on a finite 
square lattice of size N x M ( N  and M even). Using the standard mapping 1301 but keeping 
track of the correct boundary conditions, we find that Z ,  equals twice the partition function 
in vertex formulation under the restriction that~the total number of ‘up’ arrows in each row 
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and the total number of ‘right’ arrows in each column are even. We can implement one of 
the restrictions by introducing a suitable seam in one of the columns. Eventually we find 

H 
(5.2) ZI = , , v  -.Ze”” - y ($=O)+Z,”””($=-) 

2 

where the last superscripts remind us that the total number of ‘up’ arrows in each row is 
even. From this formula we directly infer that the eigenvalues of the I R F  transfer matrix 
are given by those of the ‘vertex’ transfer matrix with either 4 = 0 or $ = n/2, in each case 
under the condition of an even number of up arrows in the corresponding eigenstates. (A 
similar relation exists for the IRF transfer matrix with antiperiodic boundw conditions and 
the vertex transfer matrices with $ = 0 and 4 = rr/2 under the condition of an odd number 
S.) This completely determines the specmm of the IRF transfer matrix. Unfortunately, for 
no integer parameters S and m, the known magnetic scaling dimension xm = 118 is given 
by (4.16) as the result is always a function of y .  It tums out that the reason for this lies in 
the particular gauge (2. I )  we have used. The corresponding IRF model does not decouple 
into two Ising models at the special value of the crossing parameter y = ~ / 2 .  This can be 
achieved, however, by using (2.1) with the gauge transformation exp (‘5s”) on each bond 
such that (5.2) still holds. For the calculation of the scaling dimensions it is possible to 
stay in the gauge (2.1) yet involving a vertical seam with operators exp(irrSY) instead of 
exp (ixSz). This situation is not covered by our approach, but was treated in [13, 121 where 
the magnetic exponent x,,, = l /8  actually appears in accordance with [35]. 

Some other models such as the Ashkin-Teller model are related to the six-vertex 
model by a Temperley-Lieb equivalence [28, 29, 301. This implies that sectors of the 
quantum Ashkin-Teller model can be mapped onto certain sectors of the XXZ chain 
with possibly non-zero twist [ 121. The thermal and electric exponents are then given by 
x, = x ( S  = 0,m = I ,  @ = 0) andx, = x(S = 0,m = 0, @ = n/2) such that 

2Y 2-2y 1 
B e  = - 3-2y 12-8y H 

y=- .  a=- (5.3) 

For details and further applications to the Potts model see, for instance, [ I I ,  121. 
Another application of our results is the treatment of the thermodynamics of the spin-; 

XXZ chain within the quantum transfer matrix approach [24, 81. The largest eigenvalue 
of this matrix and the next-leading ones yield the free energy and the correlation lengths, 
respectively. The study of these problems involves techniques similar to those employed in 
the main body of this paper, however, applied to the transfer matrix of a six-vertex model 
with inhomogeneity. Details of a i s  investigation will be published elsewhere. 
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Appendix 

In this appendix we derive some formulae for dilogarithmic integrals. 
The real dilogarithmic function L+ is given by 
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where L is the Rogers dilogarithm. It satisfies the functional equation [361 

Definition .(A.l) can be extended to arbitrary integration paths C with starting point 0 and 
final point x E @. 

The notation L+(C) indicates that in general the value of the dilogarithmic integral depends 
on the homotopy class of C and not only on its endpoint as was the case in (A.1). However, 
as long as C does not encircle the point -1, we still have L+(C) = L+(x).t 

Let us now consider a path C which starts at 0 and then encircles the point -1 (and 
0) n times in a clockwise sense before finally arriving at x. (Such a path corresponds tO 
a+(L:), if n rapidities are present.) For j = 1.. . . , n we denote by C j  the path which also 
starts at 0, but first encircles the origin j times clockwise, before encircling -1 clockwise 
n - j times and ending at x. By Cj we denote a path starting at - 1 ,  encircling the origin 
j times clockwise, and ending at x. According to these properties we have 

L+(C”) = L+(x)  (A.4) 

and moreover 

(A.3 
I i, ;dy =In@) - (2 j  + 1)ni 

where In@) denotes the branch of the logarithm which is real for positive x. The higher 
branches are denoted by In’(x) i = 1.2, . . . 

Now we want to establish a functional equation for L(C) analogous to the one given in 
(A.2). Taking care of the branch cut of In(l+ y) along ] - CO, Ll[ and of the simple pole 
of Iny/( l+ y) at -1 ,we obtain 

(A.6) 

Using (A.4) and (AS) and 

I d - 1 )  = (2 j  + 1)1ii, (A.7) 

t Due to R e s y , o H  = 0 and lim,,o hY,=< e d y  = 0, C may encircle h e  origin arbiixarily many times. 
Y 
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(A.6) can be written as 

Thus we have with (A.2) 

Let us now consider the case when C encircles the point -1 not only n times clockwise 
but also k times counter-clockwise (corresponding to a+(L) with n rapidities and k strings 
present). A formula for that  case^ can immediately be obtained by substituting n --f n - k 
thus yielding 

(A.10) 

Suppose now that we calculate a second dilogarithmic integral along a path from 0 to $ 
which encircles the point -1  k times counter-clockwise (corresponding to Z+(.C)). Using 
(A.8) (with n + k), (A.10). and (A.2) we obtain 

2L(C) + 2L (6) = - - 2(n - 2k)ni In@) - 4(nz - 2nk + 2k2)n2. (A.11) 

Finally we wish to consider the situation when the path C is allowed to encircle the 
origin (but not - 1) kj times clockwise between the jth and the j + lth clockwise encircling 
of -1 (there must not be any counter-clockwise encirclmgs of -1 now) corresponding to 
the occurrence of real Bethe ansatz numbers between the rapidities. Instead of (A.6) we 
have then 

ZL+(C) = 2L+(x) - 2(n - k)niln(x) - 4(n - k)'n2. 

a2 

3 

(A.12) 

with s ( j )  = cycj kf. This gives, taking account of (A.4), (AS), and (A.7). 

2L+(C) =2L+(x)-2naiIn(x)-4 (A.13) 
j= l  k j  

To conclude, we mention that formulae analogous to (;AA), (A.10) and (A.13) but valid 
for paths C which encircle the points 0 and - 1  in the opposite sense than assumed above 
(corresponding to L(L) and Z-(L)), can be obtained by simply inverting the sign of the 
second term on the RHS of these equations from - to +. 

References 

[ I ]  Belavin A A. Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333 
(21 Friedan, D. Qiu Z and Shenker S 1984 Phj.7. Rev. Lett. 52 1575 



Conformal spectrum of the six-vertex model 2827 

[3] Cardy J L 1986 Nucl. Phys. B 270 186 
141 Bliite H W I. Cacdy J Land Nightingale M P 1986 Phys. Rev. Lett. 56 742 
[SI Kim D and Pearce P A 1987 J. Phys. A 20 U 5 1  
[q AfRcck I 1986 Phys. Rev. Len. 56 746 
[7] Bogoliubov N M and Korepin V E 1989 Inl. 3. Mod. Phys. B 3 427 
[SI Kliimper A 1992 Ann. Physik 1 540 
[9] de Vega H J and Woywovich F 1985 N u d .  Phys. B 251 439 
[IO] Woynamvich F 1987 Phyr;. Rev. Lett. 59259, 1264 
[I I ]  Karowski M 1988 Nucl. Phys. B 300 [FS221 473 
1121 Alcxaz F C. Barber M N and Batchelor M T 1988 Ann. Phys. 182 280 
1131 Alcaraz F C. Baake, M, Grimm U and Rinenberg V 1988 J.  Phys. A 21 L117. 
I141 Suzuki, I. Nagao T and Wadafi M 1992 [RI. J .  Mod. Phys. B 6 1119 
1151 Zamolodchikov A Band Fateev V 1980 Sov. 3. Nucl. Phys. 32 298 
[I61 Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Left. Math. Phys. 5 393 . ~ 

[I71 Kliimper, A, Batchelor M T and Pear= P A 1991 3. Phys. A 24 3111 
[I81 Klumper A and Pearce P A 1991 J. Stal. Phys. 64 13 
1191 Pear- P A  and Kliimper A 1991 Phys. Rev. Lett 66 974 
[20] Kliimper A and P w c e  P A 1992 Physica 183 A 304 
[211 Wamaar S 0, Batchelor M T and Nienhuis B 1992 J. Phys. A 25 3077 
1221 Yang C N and Yang C P 1969 J. Morh. Phys. 10 1115 
[231 Talahashi M 1971 Prog. Tkeor. Phys. 46 401 
(241 Suzuki M 1985 Phy.s. Rev. B 31 2957 
[251 Suzuki M and lnoue M 1987 Prog. Theor. Phys. 78 787 
[261 Koma T 1987 Pro& Theor. Phys. 78 1213: 81 783 (1989) 
[271 KlUmper A 1993 2. Phys. B 91 507 
[28] Temperley H N V and Lieb E H 1971 Proc. R .  Soc. A 322 251 
1291 Fearce P A 1990 fnl. J. Mod. Phys. B 4 715 
I301 Baxter R J 1982 Exacrly Solved Models in Statisricd Mechanics (London: Academic) 
[311 Kliimper A and Zittartz J 1988 2. Pkys. B 71 495 
[321 Kliimper A and Zittanz 1 1989 Z. Phys. B 75 371 
1331 Bogoliubov N M. Ilergin A G and Korepin V E 1986 Nuc. Phys. B 275 [FSl'Ij 687 
[34] Bogoliubov N M. Izergin A G and Reshetikin N Yu 1987 J. Phys. A 20 5361 
[351 Nightingale M P and Bl6te H W 1983 J. Phys. A 16 657 
[361 Lewin L 1958 Dilogarithms and Associaled Funclions (London: Mac Donald) 


